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Effective dissipation: Breaking time-reversal symmetry in driven microscopic energy transmission
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At molecular scales, fluctuations play a significant role and prevent biomolecular processes from always
proceeding in a preferred direction, raising the question of how limited amounts of free energy can be dissipated
to obtain directed progress. We examine the system and process characteristics that efficiently break time-reversal
symmetry at fixed energy loss; in particular for a simple model of a molecular machine, an intermediate energy
barrier produces unusually high asymmetry for a given dissipation. We relate the symmetry-breaking factors
found in this model to recent observations of biomolecular machines.
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I. INTRODUCTION

Biomolecular processes are generally out of equilibrium
[1-3], hindering our quantitative understanding of their
operation. Molecular machines typically operate far from
equilibrium in converting between different forms of energy
to perform various cellular tasks. Transport motors, such as
kinesin [4-6], use adenosine triphosphate (ATP) hydrolysis
[7] to bias motion in a particular direction [8], but random
fluctuations cause microscopic biomolecular machines to
sometimes operate backwards [5].

A process with zero dissipation must be reversible. Thus
net progress in a preferred direction requires some dissipation
[8—11], but the second law is silent as to more quantitative
details. For a simple model of a driven process, we investigate
how much irreversible progress can be achieved for a given
amount of free energy dissipation and identify process prop-
erties that produce asymmetry approaching the fundamental
physical limits.

The breaking of time symmetry (leading to “time’s arrow’)
[12] is naturally expressed by the Jensen-Shannon divergence
between the trajectory ensembles for forward- and time-
reversed-driven processes. Information-theoretic inequalities
set upper limits on the time asymmetry for a given dissipation,
increasing monotonically with dissipation [12]; essentially,
achieving a given difference between forward and reverse
dynamics requires paying a certain minimum cost (in dissipa-
tion), averaged over all realizations. Such broken time-reversal
symmetry is related to spatially anisotropic biomolecular
motion and functionally asymmetric machine operation (e.g.,
synthesizing not hydrolyzing ATP). To the extent that a given
biomolecular component was sculpted by natural selection
to achieve directed progress yet avoid unnecessarily wasting
energy, it may, subject to physical limits, achieve abnormally
high time asymmetry given a particular “dissipation budget”
[13-15].

Existing empirical explorations (experimental ribonucleic
acid hairpin unfolding and refolding [16] and molecular
dynamics simulations unfolding and refolding alanine de-
capeptide [17]) give time asymmetry-dissipation trade-offs
similar to that of a generic system obeying linear response
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theory [18]. Atlow (0-1 kg T') and high (2, 8 kg T') dissipation
the linear response system’s time asymmetry nears the upper
limit (Fig. 1), but at intermediate dissipations the linear
response time asymmetry lies well below the theoretical
maximum, leaving room for improvement.

While the second law and information theory set absolute
limits on time asymmetry for a given dissipation, we currently
lack understanding of the factors that increase or decrease
the time asymmetry within these limits. This paper addresses
characteristics of a system or process that increase time
asymmetry at a given dissipation. We investigate this issue in
a model nonequilibrium process, a harmonic trap translating
at a constant velocity and thereby dragging a diffusing particle
over a step barrier. We find that the largest time asymmetry
values at a given dissipation occur for intermediate step height
and a close initial proximity to the step.

To understand the determinants of enhanced time asymme-
try at a given dissipation, we examine protocols where the in-
stantaneous probability distribution differs substantially from
the corresponding equilibrium distribution, true for sufficiently
rapid protocols. In particular, intermediate step heights lead to
far-from-equilibrium distributions when ascending the step but
near-equilibrium distributions when descending the step. This
produces significant time asymmetry. A smaller step height is
insufficient to drive the system far from equilibrium in either
direction, while a larger step height keeps the equilibrium
distribution always below the step, preventing any significant
nonequilibrium lag.

II. METHODS

The Crooks fluctuation theorem [19] implies that the work
associated with a given trajectory captures all information
about the relative probabilities of appearing in the forward
or reverse trajectory distributions. The time asymmetry A can
be precisely estimated from the empirical forward and reverse
work distributions [12],

A[A] = 1<1n 2 >
2\ 1 +exp(—BW[x|Al + BAF) [,

2
* §<m I+ exp(—BWIEIA] ﬁAF>>A’ M

where A labels a protocol, the time course of a controllable

parameter A(z) over ¢ € [0,At], for duration Az. A is the
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FIG. 1. Time asymmetry A [Eq. (1)] vs. dissipation & [Eq. (2)].
Gray region shows unfeasible time asymmetries for a given dissipa-
tion. Solid black curve shows linear response. Left: “Far” protocols,
where a trap with spring constant k£ = 10 begins Ax/2 = 10 away
from a step of height A E = 4 (green circles) or 9 (red squares). Right:
“Close” protocols, where a trap with k = 10 begins Ax /2 = 1.5 away
from a step of height AE = 4 (green circles), 9 (blue squares), or 14
(red diamonds). Arrows indicate work distributions shown in Fig. 2,
with corresponding letter labels. Standard errors, estimated over 10
samples of 10* runs, are smaller than the data points.

time reversal of A. W[x|A] is the work done during system
trajectory x subject to protocol A. B = (kgT)~! and AF is
the free energy change over the forward protocol A. If one
observes a single trajectory resulting from either a particular
nonequilibrium process or its time reversal (with 50% prior
probability of either), then A quantifies the expected informa-
tion gain, in nats (1/1n2 bits), about whether the trajectory
was produced from a forward or reverse protocol [20]. For
identical trajectory distributions, any observation provides no
information on the direction of time, defining a minimum
A = 0. Completely distinct trajectory distributions guarantee
that any observed trajectory can be definitively assigned to
the forward or reverse process, defining a maximum A = In2
nats, corresponding to one bit of information.

Here we define dissipation as the average dissipated work
for a uniform mix of forward and reverse protocols and hence
(since they have opposite free energy changes) the average
work [12]

h[A] = 3B(WIx|AD) , + 3 B(WIEIA]);. )

For a given dissipation /, the time asymmetry A cannot exceed
certain limits [12,21] (the gray forbidden region in Fig. 1):
A < h/4and A < In[2/(1 + e™)]. The linear response A vs.
h relationship [12] (solid black curve in Fig. 1) is determined
from Gaussian work distributions with mean dissipation
(W) — AF = %O’&, for work variance o‘%, [12,22].

We investigate these issues in a model system, an over-
damped particle with diffusivity D on a potential land-
scape E[X,Xuap(t)] = Eyrap(x,1) + Egep(x) composed of two
components: a spring represented by a quadratic potential,
Eap(x,1) = %k[x — xtmp(t)]z, with a time-dependent mini-
mum A = Xyp(#) as the control parameter, and a step potential
at x = 0, Egep(x) = O(x)AE, for Heaviside function ©(x).
The step represents an energetically unfavorable transition or
energy storage stage [23]. E, k, x, and AE are dimensionless
quantities—notably, E and AE are in units of kg7 (nondi-
mensionalization details in Appendix A).

The trap translates at constant velocity u = Ax/At from
Xiap = —Ax/2 10 X, = Ax/2 for the forward protocol and
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in the opposite direction for the reverse protocol. The particle
begins in equilibrium and diffuses as the trap translates. Further
numerical simulation details are in Appendix B.

For a given spring constant k, step height AE, distance Ax,
and velocity u, work distributions are accumulated from many
repetitions of the forward and reverse protocols, from which
a single time asymmetry [Eq. (1)] and dissipation [Eq. (2)]
are calculated. Repeating this for varying velocities produces
a parametric curve of time asymmetry vs. dissipation for a
given spring constant, step height, and distance.

III. RESULTS

Figure 1 shows how different step heights and initial
trap positions xu,, lead to time asymmetries on, below,
and above linear response at a given dissipation. Significant
regions of parameter space give results indistinguishable from
linear response, and thus the linear response time asymmetry
provides a natural baseline with which to compare the time
asymmetry of a particular process.

The corresponding work distributions (Fig. 2) show that a
wider original peak and the emergence of a high-work peak can
produce decreased or increased time asymmetry, respectively.

The left panel of Fig. 1 shows time asymmetry vs. dissi-
pation for “far” protocols, where the trap begins Ax/2 = 10
away from the step with spring constant k = 10. Here the initial
equilibrium distribution is unaffected by the potential step. The
green circles, simulations with a step height AE = 4, follow
the solid black linear response curve. For point (a), the forward
and reverse work distributions appear symmetric with similar
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FIG. 2. Work distributions. Numerical simulations (solid) and
semianalytic calculations (dashed) of forward (black) and reverse (or-
ange) protocols, Pr and Pg, respectively. Panels (a)—(d) correspond
to indicated points in Fig. 1. Panels (a) and (b) show far protocols
(Ax/2 = 10). (a) Spring constant £ = 10, step height AE = 4, and
protocol velocity u = 1.44 x 107", (b) k =10, AE =9, and u =
1.00 x 1072, Panels (c) and (d) show close protocols (Ax/2 = 1.5).
() k=10, AE =09, and u = 5.04 x 1072. (d) k = 10, AE = 14,
and u = 1.33. Distributions are over 10* runs.
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variances, consistent with the Gaussian work distributions
expected from linear response behavior [Fig. 2(a)].

The red squares, for simulations with step height AE =9,
follow the linear response curve at low velocities (correspond-
ing to lower dissipation) but lie significantly below the linear
response prediction for sufficiently fast velocities. For point (b)
the forward and reverse work distributions are quite distinct
[Fig. 2(b)]: The forward distribution is significantly wider
than the reverse, extending to large positive work values. This
stretched forward work distribution, along with a nonstretched
reverse work distribution, leads to lower time asymmetry at a
given dissipation than for linear response.

The right panel of Fig. 1 shows results for “close”
protocols, where the trap (with spring constant k& = 10)
begins Ax/2 = 1.5 away from the step, and hence initial
equilibrium distributions are influenced by the potential step.
The green circles, simulations with step height AE = 4,
reproduce the black linear response curve. The blue squares,
with step height AE =9, show intermediate velocities with
increased time asymmetries. Point (c) has a forward work
distribution [Fig. 2(c)] with a dominant high-work peak having
little overlap with the reverse low-work peak; hence these
distributions are more distinguishable, increasing the time
asymmetry at a given dissipation.

The red diamonds, simulations with step height AE = 14,
fall below linear response at medium-to-high velocities. At
point (d) the forward and reverse work distributions [Fig. 2(d)]
both have peaks at high work values. The close overlap of the
high-work peaks produces lower time asymmetry at a given
dissipation than for linear response.

We examine in more detail the widening of the main peak
[e.g., for the forward work distribution in Fig. 2(b)] and the
origin of the high-work peaks [e.g., the forward distribution in
Fig. 2(c) and both distributions in Fig. 2(d)]. In Appendix C we
derive semianalytic work distributions with no free parameters
(Fig. 2, dashed lines) that primarily consider the work done as
the trap moves above the step while the particle remains below
the step. The qualitative match to the numerical simulations
(Fig. 2, solid lines) suggests this lag is the salient feature
producing the variation among work distributions. Related
analysis (Appendix D) elucidates inequalities that govern
when time asymmetry departs significantly from that of linear
response [Figs. 3(c) and 3(d)].

For an overdamped particle in a trap translating at constant
velocity on a flat landscape, at steady state the nonequilibrium
position distribution lags the equilibrium distribution by a
constant distance [24]. This system has Gaussian work distri-
butions that obey linear response at any velocity. Alternatively,
if the forward and reverse work distributions do not overlap,
dissipation tends to be sufficiently large such that the high
time asymmetry is indistinguishable from linear response.
Time asymmetry differs from that of linear response when
the nonequilibrium distribution deviates from equilibrium in a
different manner, producing non-Gaussian work distributions
with some overlap.

During the forward protocol, for sufficiently large step

height AE 2> %ln 3293221‘, the particle lags and does not im-
mediately follow the trap over the step. For large Ax, this
produces a stretched forward work distribution and hence

a time asymmetry below linear response. For step height
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FIG. 3. Deviation from linear response. Varying step height AE
and spring constant k. Panels (a) and (b) are numerical results
for the difference between the resulting time asymmetry A and
the linear response value at the same dissipation Ajg, A — Arg.
Panel (a) is for Ax/2=1.5 and u =1.76 x 107!, and panel
(b) is for Ax/2 =10 and u = 1.18 x 1072, Panels (c) and (d) show
phase diagrams, corresponding to the same parameters as in panels
(a) and (b), respectively, predicted by the criteria described in the
text. Red x’s represent below linear response, blue circles above
linear response, and no symbols on linear response. Panel (e) is
the quantity Paown siep(1 — Po)Aroom from Appendix E, which is an
analytical prediction of amount above linear response, using the same
parameters as in panels (a) and (c).

AE Z In(DkAr) and intermediate Ax, the particle remains
below the step for the entire forward protocol while the
equilibrium distribution shifts past the step. Satisfying both
inequalities above, along with intermediate Ax, results in a
significant high-work peak, producing a time asymmetry above
linear response.

For step height AE 2> %%, the reverse protocol’s initial
equilibrium includes significant probability below the step.
This produces a significant reverse high-work peak, which,
combined with an existing forward high-work peak, produces
atime asymmetry below linear response. For step height AE >
% % + In(100), nearly all the initial equilibrium distributions
for the reverse protocol begin below the step, so virtually
all realizations in both directions fall in the high-work peak,
resulting in linear response behavior.

For relatively small Ax, these inequalities can be fulfilled
in the order they are listed above, moving left to right with
increasing AE in Fig. 3(c). For large Ax, only the first
inequality is fulfilled [Fig. 3(d)]; at even higher AE the
forward and reverse work distributions do not overlap at all.

Figure 3 shows time asymmetry phase diagrams for system-
atic variation of k and A E, either [Figs. 3(a) and 3(b)] directly
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calculated via the previously described numerical simulations,
[Figs. 3(c) and 3(d)] predicted via the above inequalities,
or [Fig. 3(e)] predicted via further analysis (Appendix E).
The qualitative match between the numerical results and our
predictions in Fig. 3 confirms that the time the particle remains
below the step can explain the time asymmetry.

The analysis presented in Figs. 3(c), 3(d), and 3(e) predicts
that an intermediate range of AE will produce significantly
higher time asymmetry than linear response. These bounds can
also correspond to an intermediate range of protocol distances,
with o/8AE/k < Ax < exp(AE)/(Dku).

In this system, time asymmetry above linear response
requires (1) a significant forward high-work peak, (2) a
significant reverse low-work peak, and (3) linear response time
asymmetry significantly below the upper limit. Combining
these three criteria [Fig. 3(e), details in Appendix E] produces
a maximal time asymmetry gap at roughly the same location
as seen numerically [Fig. 3(a)].

IV. DISCUSSION

To explore how small amounts of free-energy dissipation
can be used to generate directed progress of molecular
machines, we investigated time asymmetry as a function
of dissipation for a model system: an overdamped particle
diffusing in a quadratic trap moved over a potential step. For
step heights significantly larger than kg 7', the time asymmetry
for a given dissipation can depart from that of linear response,
either above or below.

Exceeding linear response time asymmetry requires inter-
mediate step heights, which manifest lag when ascending the
step as the particle remains below the step but no lag when
descending the step. For smaller step heights, the particle easily
jumps up and hence does not significantly lag the trap, whereas
for larger step heights the equilibrium position distribution
never achieves significant probability above the step, and hence
the nonequilibrium distribution never lags the equilibrium one.
Such an intermediate step height is found in the ~ 11kgT
conformational change driving the overwhelmingly forward
stepping of the biomolecular transport motor kinesin [25].

We also found that protocols must end an intermediate
distance from the potential step for time asymmetry to exceed
linear response. Protocols ending far from the step had
higher dissipation, leaving a smaller difference between the
linear response time asymmetry and the maximum possible
time asymmetry. Protocols ending close to the step never
move the equilibrium distribution above the step, precluding
the possibility of distinct work distributions. Our theory
predicts that the range /8AE/k < Ax < exp(AE)/(Dku)
corresponds to time asymmetry exceeding linear response.
This preference for an intermediate initial distance from the
step is suggestively consistent with experiments demonstrating
the impact of kinesin neck-linker length on its transport
anisotropy [26]: Compared to wild type, artificially shortened
or lengthened neck-linkers each produce a lower ratio of
forward to backward steps.

The system remaining below the step while the protocol
completes suggests an intuitive perspective: Exceeding linear
response can result from a separation of time scales during
the forward protocol but not the reverse. The protocol period,
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defining the time scale for change in the equilibrium states,
must be significantly shorter than the time scale for the particle
to jump up the step (the equilibration time scale for the forward
protocol) but significantly longer than the time scale for the
particle jumping down the step.

During the operation of kinesin, the rear head unbinding
followed by rebinding at a forward site is thought to be
a largely irreversible transition [6]. Neck-linker docking,
a conformational change leading to a forward step of the
unbound kinesin head, is much faster than the time scale of
head diffusion and binding of the forward microtubule site
[26,27]. A “reverse protocol” with sufficient assisting force
could eliminate or potentially reverse this separation of time
scales, satisfying our posited criteria for efficient dissipation.
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APPENDIX A: NONDIMENSIONALIZATION

The energy E’ of a particle at position x’ in quadratic
trap with spring constant k" centered at x" = x{,,, with a step
potential of height AE is

E = 3K (x = xj) + AE'OX). (A1)

We nondimensionalize all quantities using energy scale H and
length scale £:

E' 1K —xg)  AE (x)
-2 = + o)

H 2 H 2 H L
We choose H = kg T, where kg is Boltzmann’s constant and 7’
is absolute temperature, so all energies are in units of kg 7. £ is
any length scale, e.g., nm or um, or a system length scale such
as particle size. We set E = E'/H, k=k'(*/H, x = x'/,
and AE' = AE/H to give the energy equation in the main
text. We also nondimensionalize time using a time scale 7:
t=t'/t.

(A2)

APPENDIX B: NUMERICAL SIMULATION DETAILS

The forward protocol begins with the particle in equilibrium
at trap minimum Xy, = —Ax/2 below the step. The trap
minimum moves a distance Ax to Xyap = Ax/2 over a time
period At. The trap moves at a constant velocity, such
that xtfap(t) = —Ax/2 + Axt/At. Reverse protocols begin
at equilibrium with xy,, = Ax/2 and proceed with negative
trap velocity such that x{fap(t) = Ax/2 — Axt/At.

Particle and trap position are evolved using a Gillespie algo-
rithm [28,29]. Particle states are discretized with §x, = 0.05.

032137-4


http://www.westgrid.ca
http://www.computecanada.ca

EFFECTIVE DISSIPATION: BREAKING TIME-REVERSAL ...

The particle takes steps either left or right, with rates described
by the Metropolis criterion. The rate is I' = I'gexp(—S§E)
for energy difference §E > 0 between current and proposed
states, flat-landscape transition rate ['g = 2D/(8x,,)2, and
diffusion coefficient D = 1/2. TherateisI' = I'p for §E < 0.
The trap translates in steps of Sxgap = 10~* to maintain a
velocity u = 8xyqp/0t, with 1/8¢ defining the rate for the
Gillespie algorithm. The small dxy,, leads to high rates
1/8t = u/8xyqp in the Gillespie algorithm, such that the trap
moves nearly deterministically.

The forward protocol free energy change is AF =

Flx trdp(At)] F [xmp(O)] for equilibrium free energy

F[xtrap] = hlZ exp [_E(xaxlrap)]-

APPENDIX C: WORK DISTRIBUTIONS

1. Forward work distributions

For the forward process, the distribution of times for a
particle to jump up and remain above the step is

Pjump up(t) = Pdown step(t)rdownﬁup(t) s (Cl)
where
d Paown step(?)
%ﬁep Fdown—>up(1‘) Pdown slep(t) (C2)

with initial condition Pgown step(t = At/2) = 1. We split the
rate Lgownup(t) = Tjump(?) Pstay(?) at which a particle perma-
nently jumps up the step into a product of two terms: I'jymp(?)
is the rate at which a particle arrives at the step and jumps
up, and Py,y(2) is the probability that a particle, once it has
jumped up the step, will remain above the step until the end of
the protocol.

To find I'jump(?), we consider the time scale of attempted
jumps up, Tagempt(t) = (xz),/(ZD). A fraction exp(—AE) of
the attempts succeed so the rate of jumping up the step is
Fjump(t) = exp(— A E)/Tagempt(?)- (x?), is the average squared
distance of the particle from the step while it is stuck on the

J

DVk

1
(e Sk _
2w

Fdown—)UP(t) =2De " exXp |:_

When the forward protocol finishes at Xy, = Ax/2, the
particle remains below the step with probability Paown siep(A?).
Such trajectories form the distinct peak at high work values in
the forward work distribution.

To get work distributions from these distributions of the
time the particle jumps up the step, we need the forward
protocol work accumulated to time ¢,

WF(t)=/ k(x xtrap(t)>— dr’. (C1D)
0

_Lax/2n 1
e 2k(A /2 )i|/ trap(t) + E
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low side, with the trap minimum above the step,

(x?) L ooxzex —lk[x—x (O] tdx, (C3)
t Z(t) 0 P 2 trap )

where
k
Z(t) = \/;{l + erf|:\/>xmp(t)“ (C4)
Integrating gives
2 Xuan(t) exp kxzra (1)
(x%)1 = Xiggp(1) + ! + \/; il i ]. (C5)

k 1+ erf[[ xtmp(t)]

To find Pyay(t), we model escape from the trap, when
centered above the step, as escape from a truncated quadratic
trap with potential

k(x xtrap)zy ifx <0
Vi) = { 00, ifx > 0, ()
The rate of escape from this trap is [30]
DK3/? )
Fescape(t) = E |xtrap(t)| €Xp [ kxtrap(t)j| . (C7)

For a particle that has just jumped into the trap at time #ump,
the probability that it remains in the trap is

d Py trap(t )
dt
with Pip trap(fjump) = 1 (if the particle jumped into the trap at
time #jymp, then the probability that the particle is in the trap is
unity at this time). Solving for the probability that the particle
will remain in the trap until the end of the protocol at time
Ax /u, given that it jumped up the step at time fjymp, is

= _Fescape(t)Pin lrap(t)v (CS)

slay(tjump) = Py lrap(Ax/u) (C9a)
= exp { _ D\/E [6 zkxlrap(tjump) 7%k(Ax/2)2] } .
u/2mw
(C9b)

Combining [jump(f) [in-line in the paragraph following
Eq. (C2)] and Pyy(2) [Eq. (COb)] gives

«fmmmzmw
1— erf[f Xuap(1)]

(C10)

(

The average deviation of the particle from the trap minimum
is

(% = Xap(D))s = Zm/ mm{—%h mﬂm}w

(C12a)
Z ex lkxzm ()
_ \/; P[ trap ] 7 (C12b)

1- erf[\/>xtrap(t)]
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where Z(t) is defined in Eq. (C4). The work distributions
derived above are shifted and convolved with a Gaussian
distribution according to linear response theory [24] (details
below) to produce the semianalytical distributions in Fig. 2.

2. Reverse work distributions

For the reverse process, the distribution of times ¢ (after the
beginning of the protocol) for a particle to jump down the step
is

Piump down(t) = Pup step(1)"up—down (1), (C13)
where
d Pyp sen (1)
upd—s;ep = —Fup%down(l‘)Pup step(l). (C14)

Iup— down(?) 18 the escape rate from Eq. (C7). Solving Eq. (C14)
with Pyp gep(0) = 1 — Py gives

Pup step(t D
p‘tp():exp{__

ie—k(Ax)z/S[e—kuz(ut—Ax)/Z -l
1-P

2
(Cl15)

Py = 1/(1 + Q) is the probability that the system is below the
step in equilibrium at the beginning of the reverse protocol,

with
L Ler( /5 an)

1— erf(\/g%) '

Py quantifies the size of the distinct high-work peak of the
reverse work distribution.
The reverse work is

O=e (Clo)

! dx
Wr(t) = / k(x —xt’fap(t’))l,ﬁdt . (C17)
0

3. Convolving and shifting work distributions

Equation (C1) gives a distribution of times to jump up the
step for the forward protocol, and Eq. (C13) the distribution of
times to jump down the step for the reverse protocol. We also
consider the probabilities that a particle does not jump up the
step by the end of the forward protocol [see discussion after
Eq. (C10)] and that a particle starts the protocol in equilibrium
down the step for the reverse protocol [see the in-line equation
after Eq. (C15)]. Together, these form forward and reverse
time distributions for jumping up and down the step. Equations
(C11) and (C17) transform these time distributions into work
distributions.

To complete our description of the work statistics, we also
account for the work exerted while the particle remains on
one side of the step. We convolve the low-work peaks with a
Gaussian of variance

2(Ax)? 1 _
2 — 1 DkAt 1 ,
o [ + D t(e )

C18
DAt kA (C18)

and mean o2 /2, that exactly describes the work fluctuations for
a quadratic trap translating at constant velocity on a flat energy
landscape [24]. The high-work peaks, which correspond to
trajectories where the particle remains below the step for the
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entire protocol, are convolved and shifted using half of the
above variance, as such a particle will travel roughly Ax/2,
half the distance Ax traveled by a particle that jumps up the
step with sufficient time to equilibrate before the protocol
concludes.

APPENDIX D: CRITERIA FOR PREDICTING ON, BELOW,
OR ABOVE LINEAR RESPONSE

First, we derive the condition that the forward work
distribution is stretched out. We expect this when the time
scale of a particle jumping up the step,

<x2>z

r-! ¢y=——="__| D1
jurnp (1) 2Dexp(—AE) ©b
is longer than the time scale ¢, — (Af/2) to remain up the
step once it jumps, which satisfies Py (t:) = 0.5 for P,y (1)
defined in Eq. (C9b).
To find the time scale Fj:rlnp(t) in Eq. (D1), we start with

(x?),, calculated in Eq. (C5). Assuming the trap is far from the
step compared to the trap width, i.e., %kxtzmp(t) >> 1 (necessary
to avoid immediate escape of the particle), we find (x?), ~
3/[k*x3,(1)]. Using xuap(t) = u(r — At/2) and inserting into
Eq. (D1) produces

rl ()= )

jump 2D(ku)*(t — At/2)> exp(—AE)’ ®

To determine ¢, — (Af/2), we assume the particle jumps
when the trap minimum is far from the end of the protocol,
ie., ut < Ax/2, and solve Eq. (C9b) for t — At /2 to give

At 2 u |2m
t— 7 = —Wln —B TIHPstay(t) . (D3)

ImpOSing =1 and Pstay(tc) = %a

r-! (t) Z t. — (At/2) gives (after rearrangement)

Jump

and substituting into

(2AE) 2, 32 D%k | b k (D4)
X ——In| ——=/— ).
P ~79 7wz "\um2Var
Assuming the logarithmic term is order unity produces
1 32 D%k
AEZ —In| —— ). (D5)
2 9 u?

Next, we derive the condition for the forward work
distribution to have a significant high-work peak. We expect
this when the time scale for jumping up the step is longer
than the remaining protocol time (half the total protocol time
elapses after the trap minimum passes the step),

At

Tiomp() 2 =

jump 2 (D6)

Substituting I'jymp from Eq. (D2) and ¢ — At/2 from Eq. (D3)
and rearranging:

(AE)> 2pkar (-2 | X (D7)
€X' — n — .
PAasiz 3 w2V 27
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Approximating the logarithmic term as unity gives

AE 2 In DkAt. (D8)

Next, we derive the condition for the reverse work dis-
tribution to have a significant high-work peak, which occurs
when the initial equilibrium distribution has significant support
down the step. At the beginning of the reverse protocol,
Xuap = Ax /2. The energy at the trap minimum is AE, and the
energy immediately below the step is %k(Ax /2)%. Thus the
equilibrium probability density immediately below the step
exceeds the probability density at the trap minimum when

1 (Ax)’
AE > —k{ — ] .

2 2
Next, we derive the condition for the reverse work dis-
tribution to have a dominant peak at high work values. At
the beginning of the reverse protocol, we require that the
equilibrium probability immediately below the step is much

higher (arbitrarily set to 100x) than the probability at the trap
minimum:

(D9)

1 [Ax)?
exp _Ek - > 100 exp(—AE), (D10)
which rearranges to
1 (Ax\’
AE > §k<7x) +1n100. (D11)

Finally, we define the forward and reverse distributions as
effectively distinct when they have only 0.1% overlap, i.e.,
when Xpedge > XR edge fOT

0.999 = / Pr(W)dW, (D12a)
XFedge
XR edge

0.999 = / Pr(W)dW. (D12b)

APPENDIX E: MAXIMIZING TIME ASYMMETRY

The forward and reverse work distributions can each
develop two peaks, resulting from two different classes of
trajectories. The low-work peak reflects trajectories where the
particle stays near the trap as it crosses the step. The high-work
peak results from the particle remaining below the step for the
entire protocol.

For small step heights AE, both the forward and reverse
work distributions only have a low-work peak. As the step
height increases, the forward work distribution develops a
high-work peak, and as the step height increases further,
the reverse work distribution also develops such a second
peak. The time asymmetry A increases as the trajectory
distributions for the forward and reverse protocols become
more distinct and therefore increases for higher probabilities
of the forward high-work peak and subsequently reverses for
higher probabilities of the reverse high-work peak.

The weight of the forward high-work peak is the probability
that a particle remains below the step at the end of the forward

PHYSICAL REVIEW E 94, 032137 (2016)

protocol. The rate at which a particle jumps up the step is

2D exp(—AEFE)

o Pw® @D

Fdown—>up(t) =

We assume that P,y (f) > 1 fortimes t > #, i.€., Pyay(t) =
O(t —t.), with the time f. defined by Pay(t) = % from
Eq. (D3). Using xyap(f) = u(t — At/2) and the in-line equa-
tion following Eq. (D1), (x2), = 3/[k2xt2rap(t)], gives

Laown—up(t) = 3 D(ku)*(t — At)> exp(—AE).  (E2)

We substitute Eq. (E2) into Eq. (C2) and integrate:

/ Paown step(?) M (E3)
P

!
down step(fc) P down step

2 t
= _§D(ku)2 exp(—AE) / (t' — At/2)%dr’,
1,

which for Pyown step(fc) > 1 gives the probability of a particle
remaining below the step for the entire protocol:

Pdown step(At)
~ exp [—2D(ku)’e “F[(A1/2)’ — (1. — At/2)*]].
(E4)

The weight of the reverse low-work peakis Py = 1/(1 + Q)
for Q defined in Eq. (C16).

Only at intermediate dissipation 4 is there any room
for Ajpom(h) to improve on the time asymmetry Ajg(h)
of linear response before hitting the maximum possible
time asymmetry, Ajmit(2). Here, by examining the forward
high-work peak and the reverse low-work peak, we crudely
estimate the dissipation and thereby determine this difference,
Aroom(h) = Agimic(h) — ALr(h).

We estimate the mode of the forward high-work peak as
W = %k(Ax /2)%, the energy difference between the particle
stuck behind the step at the end of the forward protocol
when X,y = Ax/2, and the particle at the step when the trap
minimum crosses the step, which dominates the work accrued
with the trap below the step.

To estimate the mode of the reverse low-work peak, we find
the trap position at which the particle is most likely to jump
down the step during the reverse protocol and calculate the
subsequent work done as the trap minimum approaches and
crosses the step, which dominates the work accumulated while
the particle and trap minimum are on the same side of the step.
Assuming Pypsep = 1, the probability of jumping down the
step [Eq. (C13)] simplifies to

Di3/? 1
Pjump down(xtrap) = Extrap exp _§kxtmp . (E5)

Maximizing Pjump down(xtrap) by setting deump down(xlrap)/
dxXyap = 0 gives xtﬁz;k = k~'/2. The corresponding work while
the particle and trap are on opposite sides of the step is

1 peaky2
k(X )
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The dissipation is half the difference between the two peaks,

11
hk,Ax) = —[—k(

212

I

Ax\? 1
) - ey

-1
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(E6a)

(E6b)

We use this dissipation estimate to determine the room above linear response A;oom[/(k,Ax)]. The color map of Fig. 3(e)

plOtS (1 - PO)Pdown step(At)Aroom-
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